约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文促使了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用概念,也就是不限于两人零和博弈。该概念后来被称为纳什均衡。
纳什均衡理论指的是:假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人的最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子。
假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌疑人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。